斜裂纹航空液压直管振动特性分析Vibration Characteristics Analysis of an Aeronautical Hydraulic Straight Pipe with Slant Crack
窦金鑫,于晓光,杨同光,刘忠鑫
摘要(Abstract):
为了研究含裂纹航空液压直管的振动响应特性,防止液压管路系统出现灾难性失效,针对液压直管可能出现的斜裂纹故障,考虑剪切力以及剪切系数的影响,推导出斜裂纹液压直管的局部柔度系数表达式,从而建立斜裂纹液压直管流固耦合有限元模型。利用Newmark-β积分法求解了液压直管的振动响应,将数值计算结果与试验测试结果对比分析,验证了有限元模型的正确性。利用本文模型分析了裂纹夹角和柱塞泵转速对液压直管系统振动响应特性的影响,结果表明:裂纹夹角的变化会影响液压直管的振动响应,当裂纹夹角趋于0°时,液压直管的振动响应幅值最小,随着裂纹夹角的增加,裂纹对液压直管振动响应的影响更显著;在不同的转速下,横向裂纹液压直管的振动响应幅值均大于斜裂纹液压直管。
关键词(KeyWords): 航空液压直管;斜裂纹;振动响应;应力强度因子;有限元法
基金项目(Foundation): 国家自然科学基金(51775257)
作者(Author): 窦金鑫,于晓光,杨同光,刘忠鑫
DOI: 10.13675/j.cnki.tjjs.200264
参考文献(References):
- [1]权凌霄,孔祥东,俞滨,等.液压管路流固耦合振动机理及控制研究现状与发展[J].机械工程学报,2015,51(18):175-183.
- [2]林君哲,周恩涛,杜林森,等.航空发动机管路系统振动机制及故障诊断研究综述[J].机床与液压,2013,41(1):163-164.
- [3] Wang F S,Zheng W,Li P,et al. Initial Crack Propagation and the Influence Factors of Aircraft Pipe Pressure[J]. Materials,2019,12(19).
- [4] Li J T,Deng H,Jiang W J. Dynamic Response and Vibration Suppression of a Cantilevered Pipe Conveying Fluid under Periodic Excitation[J]. Journal of Vibration and Control,2019,25(11):1695-1705.
- [5] Li S J,Karney B W,Liu G M. FSI Research in Pipeline Systems-A Review of the Literature[J]. Journal of Fluids and Structures,2015,57:277-297.
- [6] Alizadeh A A,Mirdamadi H R,Pishevar A. Reliability Analysis of Pipe Conveying Fluid with Stochastic Structural and Fluid Parameters[J]. Engineering Structures,2016,122:24-32.
- [7] Gao P X,Zhai J Y,Han Q K. Dynamic Response Analysis of Aero Hydraulic Pipeline System under Pump Fluid Pressure Fluctuation[J]. Proceedings of the Institution of Mechanical Engineers,Part G:Journal of Aerospace Engineering,2019,233(5):1585-1595.
- [8] Gao P X,Zhai J Y,Qu F Z,et al. Vibration and Damping Analysis of Aerospace Pipeline Conveying Fluid with Constrained Layer Damping Treatment[J]. Proceedings of the Institution of Mechanical Engineers,Part G:Journal of Aerospace Engineering,2018,232(8):1529-1541.
- [9] Gao P X,Zhai J Y,Yan YY,et al. A Model Reduction Approach for the Vibration Analysis of Hydraulic Pipeline System in Aircraft[J]. Aerospace Science and Technology,2016,49:144-153.
- [10] Keramat A,Tijsseling A S,Hou Q,et al. Fluid-Structure Interaction with Pipe-Wall Viscoelasticity During Water Hammer[J]. Journal of Fluids and Structures,2012,28(1):434-455.
- [11] Yu Z H,Zhang L B,Hu J Q,et al. Cracked Modeling and Vibration Analysis of Pipe with a Part-Through Crack[J]. Journal of Vibroengineering,2017,19(2):930-942.
- [12]陶海亮,左志涛,高庆,等.基于时频分析的裂纹转子碰摩故障特征研究[J].推进技术,2013,34(4):520-528.(TAO Hai-liang,ZUO Zhi-tao,GAO Qing,et al. Fault Analysis of Rotor with Rub-Impact and Crack Based on Time-Frequency Analysis[J]. Journal of Propulsion Technology,2013,34(4):520-528.)
- [13] Zeng J,Ma H,Zhang W,et al. Dynamic Characteristic Analysis of Cracked Cantilever Beams under Different Crack Types[J]. Engineering Failure Analysis,2017,74:80-94.
- [14] Hui Ma,Jin Zeng,Ziqiang Lang,et al. Analysis of the Dynamic Characteristics of a Slant-Cracked Cantilever Beam[J]. Mechanical Systems and Signal Processing,2016,75:261-279.
- [15]马辉,曾劲,郎自强,等.斜裂纹悬臂梁非线性振动特性分析[J].振动与冲击,2016,35(12):86-91.
- [16]包日东,梁峰.两端弹性支承裂纹管道的非线性动力学特性[J].振动与冲击,2017,36(1):70-74.
- [17]包日东,梁峰.两端一般支承裂纹管道的动力学特性[J].振动与冲击,2016,35(7):220-224.
- [18] Dimarogonas A D,Paipetis S A. Analysis Methods in Rotor Dynamics[M]. Essex:Applied Science Publishers,1983.
- [19] Ye J J,He Y M,Chen X F,et al. Pipe Crack Identification Based on Finite Element Method of Second Generation Wavelets[J]. Mechanical Systems and Signal Processing,2010,24(2):379-393.
- [20] Cowper G R. The Shear Coeficient in Timoshenko’s Beam Theory[J]. Journal of Applied Mechanics,1966,33(3):393-398.
- [21]王勖成.有限单元法[M].北京:清华大学出版社,2010.
- [22]高培鑫.多源激励下航空液压管路系统振动分析及其约束层阻尼减振技术研究[D].大连:大连理工大学,2017.
- [23]魏代同.液压管路的主动约束层阻尼振动控制技术研究[D].大连:大连理工大学,2018.
- [24]李占营,王建军,邱明星.航空发动机空间管路系统的流固耦合振动特性[J].航空动力学报,2016,31(10):2346-2352.
- [25]陈果,罗云,郑其辉,等.复杂空间载流管道系统流固耦合动力学模型及其验证[J].航空学报,2013,34(3):597-609.